Critical Neumann Problem with Competing Hardy Potentials

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elliptic problems with critical exponents and Hardy potentials

This paper is devoted to the existence of positive solutions of a Dirichlet problem with critical exponent and a singular potential. Under various assumption on the domain O; which include some kinds of unbounded domains, we prove the existence of ground states and of symmetric solutions. r 2002 Elsevier Science (USA). All rights reserved.

متن کامل

Interior spikes of a singularly perturbed Neumann problem with potentials

where Ø is a smooth bounded domain of R with external normal ν, N ≥ 3, 1 < p < (N + 2)/(N − 2), J : R → R and V : R → R are C functions. In [5], the first author, extending the classical results by Ni and Takagi, in [3, 4], proved that there exist solutions of (1) that concentrate at maximum and minimum points of a suitable auxiliary function defined on the boundary ∂Ø and depending only on J a...

متن کامل

An Elliptic Problem with Critical Exponent and Positive Hardy Potential

where B1 = {x ∈ RN | |x| < 1} is the unit ball in RN (N ≥ 3), λ, μ > 0, 2∗ := 2N/(N − 2). When μ < 0, this problem has been considered by many authors recently (cf. [5, 6, 7, 8]). But when μ > 0, this problem has not been considered as far as we know. In fact, the existence of nontrivial solution for (1.1) when μ > 0 is an open problem which was imposed in [7]. In this paper, we get the followi...

متن کامل

On the quasilinear elliptic problem with a critical Hardy–Sobolev exponent and a Hardy term

In the present paper, a quasilinear elliptic problem with a critical Sobolev exponent and a Hardy-type term is considered. By means of a variational method, the existence of nontrivial solutions for the problem is obtained. The result depends crucially on the parameters p, t, s, λ and μ. c © 2007 Elsevier Ltd. All rights reserved. MSC: 35J60; 35B33

متن کامل

Singularly perturbed Neumann problems with potentials

Such a problem was intensively studied in several works. For example, Ni & Takagi, in [11, 12], show that, for ε sufficiently small, there exists a solution uε of (2) which concentrates in a point Qε ∈ ∂Ω andH(Qε) → max∂ΩH , here H denotes the mean curvature of ∂Ω. Moreover in [10], using the LiapunovSchmidt reduction, Li constructs solutions with single peak and multi-peaks on ∂Ω located near ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Revista Matemática Complutense

سال: 2007

ISSN: 1988-2807,1139-1138

DOI: 10.5209/rev_rema.2007.v20.n2.16485